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ABSTRACT  

 

Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional 

OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for 

both profile and total column ozone (TCO). The ozone uncertainty is a composite of the 

uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those 

being the ozone sensor current, background current, internal pump temperature, pump 

efficiency factors, conversion efficiency, and flow-rate. Overall, PO3 uncertainties (ΔPO3) are 

within 15% and peak around the tropopause (15±3km) where ozone is a minimum and ΔPO3 

approaches the measured signal. The uncertainty in the background and sensor currents 

dominate the overall ΔPO3 in the troposphere including the tropopause region, while the 

uncertainties in the conversion efficiency and flow-rate dominate in the stratosphere. 

Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ 

sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, 

we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the 

ozone residual uncertainty, derived from the McPeters and Labow [2012] 1-σ ozone mixing 

ratios. Overall, ΔTCO are within ±15 DU, representing ~5-6% of the TCO. TOMS and OMI 

satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity 

between TOMS v8.6 (1998-2004/09) and OMI (2004/10-2016) TCO on the order of 10DU 

that accounts for the significant 16DU overall difference observed between sonde and 

TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 

~4DU. 

 

1. Introduction 

1.1. Influence of ECC Ozonesonde Measurements 

 

The electrochemical concentration cell (ECC) ozonesonde was developed by Walter 

Komhyr [Komhyr, 1969] and has been flown at ~80 stations worldwide since the late 1960’s 

[Logan, 1985; Tiao et al., 1986; Tarasick et al., 2005; Oltmans et al., 2006; Hassler et al., 

2008; Stauffer et al., 2016]. The ECC instrument consists of a gas-sampling pump connected 

to an ozone sensor, and an electronic interface that connects the ozone sensor to a 

radiosonde for data telemetry (see Figure 1 in Komhyr et al. [1995]). Measured parameters 
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transmitted to the ground receiving station are ozone current, the ozonesonde’s pump 

temperature, motor voltage and current, and ambient pressure, temperature, and relative 

humidity (P-T-U). In recent decades, winds and GPS-enabled measurements became 

available. In flight, the instrument is encased in a weatherproof box that is tethered to 

balloon, capable of measuring ozone up to an altitude of ~35 km. The balloon ascent rate, 

typically around 5 m/s, and data transmission rate lead to a vertical resolution within 150 m.  

Light-weight, compact, and relatively easy to prepare and launch, ozonesondes (also 

referred to here as sondes) fulfil an important role in providing high vertical resolution 

ozone (O3) profiles from the surface to the middle stratosphere, capable of making 

measurements during polar night and in cloudy and rainy conditions. They are readily 

deployed from remote locations, such as over Antarctica, and high-latitude Europe, US and 

Canada. For example, during the Match campaigns over the Arctic [Von der Gathen et al., 

1995; Rex et al., 1998, 2006], trajectory pathways of ozone-depleted air parcels measured 

from one location can be forecast and sondes launched from other sites can intercept the 

low-ozone filaments.  The IONS series of North American campaigns collected hundreds of 

soundings with daily launches from 8-20 sites over 3- to 6-week periods to augment aircraft 

in-situ and lidar profiles [Thompson et al., 2007a, 2008, 2011]. Studies using tropical 

ozonesonde measurements have examined the tropical wave-one feature [Thompson et al., 

2003, Sauvage et al., 2006; Thompson et al., 2017], quasi-biennial oscillations and ENSO 

features [Thompson et al., 2001; Logan et al., 2003; Witte et al., 2008; Lee at al., 2010; 

Randel and Thompson, 2011], and the tropical transition layer [Folkins et al., 1999; 

Gettelman and Forster, 2002; Corti et al., 2006; Fu et al., 2007; Randel et al., 2007; 

Thompson et al., 2012]. 

Ozonesonde data have become highly valued over the past 20 years as a large 

community is focused on O3 trends in the upper troposphere and lower stratosphere, a 

region where satellite data do not provide the vertical resolution and sampling frequency 

that sondes typically do [Bodeker et al., 1998; Rao et al., 2003; Kivi et al., 2007; Gebhardt et 

al., 2014].  
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1.2. Reprocessing of ECC Ozonesonde Data 

 

As popular as the sounding data have become, it is clear when long-term sonde-based 

O3 records are examined in detail that changes in the ozonesonde instrument, calibration 

and preparation techniques, and data-processing methods lead to discontinuities and 

possibly artifact trends at individual sites [Witte et al. 2017]. In addition, there are station-

to-station variations in satellite O3 biases versus sondes, biases among stations, and biases 

within the data record of an individual station that must be corrected for if sondes are used 

to assess measurement uncertainties and the reliability of O3 profile trends [Thompson et 

al., 2003, 2007b, 2014].   

Accordingly, the ozonesonde community has worked for many years to establish quality 

assessment standards for ozonesondes. The first important step in this effort was the 

establishment in the mid-1990s of the World Calibration Center for Ozone Sondes (WCCOS) 

[Smit and Kley, 1998; Smit and Straeter, 2004a, 2004b]. The periodic intercomparison 

experiments conducted in WCCOS, called Jülich Ozonesonde Intercomparison Experiments 

(JOSIE), operate with a standard O3 reference UV photometer in a chamber. In the test 

chamber ozone is introduced under changing temperature and pressure conditions at a rate 

that simulates profiles that correspond to standard high-latitude, mid-latitude, sub-tropical 

and tropical conditions. The first JOSIE (JOSIE-1996; Smit and Kley [1998]) included non-ECC 

sondes that have largely been replaced at operational stations [De Backer et al., 1998; 

Fujimoto et al., 2004; Stübi et al., 2008].  

From subsequent JOSIE campaigns (1998, 2000) the focus of the WCCOS tests has been 

on ECC sondes manufactured by Science Pump Corporation (SPC) and ENSCI, and 

characterizing how different SST (sensing solution type) perform under the various 

simulations [Smit et al., 2007]. These campaigns revealed that differences in O3, as 

measured among different ECC sensors, are largely due to differences in preparation 

procedures and SST used by participating researchers. The outcome was that two 

combinations of instrument type and SST were recommended as standard operating 

procedures (SOP) [Smit et al., 2007, Smit and ASOPOS, 2014]. The same combination 

emerged as the WMO (World Meteorological Organization) preferred standard during the 

BESOS campaign (Balloon Experiment on Standards for Ozonesondes) in 2004 that 
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evaluated the ozone response of commonly used ECC/SST pairings following JOSIE SOP 

guidelines under ambient conditions [Deshler et al., 2008].   

After 2010, several Ozonesonde Expert meetings and the SPARC-IO3C-IGACO-NDACC 

(Stratospheric Processes and their Relation to Climate, International Ozone Commission, 

International Gases and Aerosols Composition, Network for Detection of Atmospheric 

Chemical Composition Change) SI2N activities considered how to homogenize long-term 

datasets for trends because a number of stations had more than 30 years of ECC records, 

albeit with both ozonesonde and radiosonde changes.  These activities and the results of 

JOSIE, BESOS, and further dual balloon soundings led to the creation of the O3S-DQA (Ozone 

Sonde Data Quality Assessment) panel report [Smit and O3S-DQA, 2012] (hereafter referred 

to as Smit12) the goals of which are to (1) establish guidelines for reprocessing ozonesonde 

data records to remove inhomogeneities due to instrumental or procedural artifacts, and (2) 

determine the contributions of the individual uncertainties of the different instrumental 

parameters to the O3 measurement. The WMO/GAW (Global Atmospheric Watch) Report 

#201, referenced as Smit and ASOPOS [2014] and hereafter referred to as the WMO/GAW 

Report, is a comprehensive summary of the Smit12 findings. The O3S-DQA panel report has 

also formalized the concept of transfer functions to compensate for instrument-SST 

changes.  Deshler et al. [2017] have recently published the set of transfer functions based on 

the JOSIE and BESOS experiments and on unpublished field comparisons that incorporate a 

total of 197 tests with the SPC and ENSCI ECC sensors.   

 
 
2. SHADOZ and Data Reprocessing 

 

Since early 2016 we have been reprocessing the Southern Hemisphere ADditional 

OZonesondes (SHADOZ) record [Witte et al., 2017; Thompson et al., 2017, hereafter 

referred to, respectively, as Witte17 and Thompson17] according to the O3S-DQA guidelines 

using customized software based on Skysonde (developed by Allen Jordan at NOAA/Earth 

Systems Research Laboratory/Global Monitoring Division (NOAA/ESRL/GMD)).  

Figure 1 displays the map of the stations for which data are analyzed in detail in this 

study. Details of the first reprocessing of SHADOZ data from seven sites appear in Witte17.  

When added to data from six other SHADOZ stations, including four sets from stations 



 

 
© 2018 American Geophysical Union. All rights reserved. 

reprocessed by NOAA/ESRL/GMD, 14 stations with continuous data of at least one decade 

have been evaluated in Thompson17. Those reprocessed SHADOZ data were compared to 

three BUV (backscatter UV) type satellite total column ozone (TCO) amounts spanning 1998-

2016 and to co-located ground-based instruments at nine SHADOZ stations. Thompson17 

showed that, compared to earlier evaluations [Thompson et al., 2003, 2007b, 2012], offsets 

between ozonesonde and satellite TCO are reduced due to the homogeneity of the newly 

reprocessed ozonesonde data records. Most stations ended up with sonde TCO, satellite 

and where applicable, ground-based instruments, within 2% of one another. 

In this paper we reprocess data for Réunion a second time and present the first 

reprocessed data for Costa Rica (various locations around San José) and Nairobi (refer to 

locations in Figure 1). However, the principal goal here is to report an uncertainty analysis of 

the ozonesonde measurement system, term by term, for the 8 stations we have 

reprocessed at NASA/GSFC, as well as uncertainties in TCO amounts.  In the latter case we 

compare the columns to EP/TOMS (Earth Probe - Total Ozone Mapping Spectrometer) and 

OMI (Ozone Monitoring Instrument) satellite overpasses.  

Following Witte17, this study continues the O3S-DQA goal of determining uncertainties 

in the ozonesonde measurement system. The treatment of uncertainty in this study closely 

follows the definitions described in Smit12. Section 3 describes details of the ozone 

measurement and the reprocessing of SHADOZ data to date. Section 4 analyzes the 

uncertainty relationships term by term. The profile uncertainties appear in Section 5 and 

column uncertainties in Section 6, followed by a Summary (Section 7).  

 

3. Details of the Ozonesonde Measurement and Reprocessed SHADOZ Ozonesonde Data 

3.1. The Ozonesonde Measurement 

 

The ECC sensor measures O3 using iodine/iodide electrode reactions. Two platinum 

electrodes are immersed in separate cathode and anode chambers of differing 

concentrations of potassium iodide (KI) solution. The anode cell contains a solution 

saturated with KI. Both cells contain an equal concentration of potassium bromide (KBr) and 

a phosphate buffer to maintain a neutral pH. An ion bridge connecting the two chambers 

allows ions to flow between the two cells but prevents mixing, thereby preserving their 

respective concentrations. Ambient air containing O3 is pumped into the cathode cell and 
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reacts with iodide (I−) in solution to form iodine (I2). To maintain electrochemical equilibrium 

I2 is converted back to I− on the platinum electrode resulting in the release of two electrons. 

Thus, each O3 molecule entering the sensor causes two electrons to flow through the ECC’s 

external circuit, which it measures as a current. The resulting electrical current is 

proportional to the amount of O3 in the sampled air. The electrochemical technique 

assumes no secondary reactions take place and a 1:1 stoichiometric relationship of the O3:I2 

is maintained. The relationship between O3 and the electrical current is defined by the 

following equation: 

                       

      
      (1) 

where 

PO3 = Ozone partial pressure, mPa 

IM = Cell current, μA 

IB = Cell background current, μA 

TP = Ozonesonde pump temperature, K 

ΦP = Pump flow-rate, ml/s 

ΨP = Pump flow efficiency, unitless 

ηC = Conversion efficiency which is generally assumed to be 1. 

The constant, 4.307×10-2, is the half ratio of the ideal gas constant (8.314 JK-1mole-1) to 

Faraday’s constant (9.6487×104 Cmole-1). Equation 1 is similar to what is written in the 

WMO/GAW Report.  

 

3.2. SHADOZ Reprocessed Data 

 

SHADOZ is the premier archive of tropical and sub-tropical ECC ozonesonde data. Since 

this NASA program started in 1998, SHADOZ has archived ozonesonde profiles from up to 15 

tropical sites with support from NOAA/ESRL/GMD and international partners. Data are 

publicly available at <https://tropo.gsfc.nasa.goc/shadoz>.  Information on the eight 

SHADOZ sites described in this study (Figure 1) appears in Table 1; each site’s location is 

summarized. Launches are twice to four times per month. We use 1998-2016 data from the 

six sites that have been reprocessed by Witte17. Costa Rica and Nairobi were later 
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reprocessed based on Witte17 methods that closely follow Smit12 guidelines. Evaluation of 

these two datasets can be found in Thompson17.  

A transfer function based on Deshler et al. [2017] is applied to the Nairobi 1998-2010/05 

data to convert O3 measured with a non-standard ENSCI ECC/1% full buffer SST to the WMO 

and manufacturer recommended ENSCI/0.5% half buffer equivalent. A similar transfer 

function is used to homogenize 2007/08-2016 Réunion data from an ENSCI/0.5% full buffer 

SST to the standard ENSCI/0.5% half buffer. Both applications reduce O3 measurements by 

about 4%. Witte17 applied a transfer function to 6% of the profiles in the beginning of the 

Réunion record where SPC/0.5% half buffer SST was adjusted to the WMO recommended 

ENSCI/0.5% half buffer. An overview of transfer functions applied by Witte17 and in this 

study to the eight SHADOZ sites is found in Table 2. Transfer functions have been applied to 

over half the profiles at Réunion and Nairobi, and 48% at Hanoi. Transfer functions applied 

at Ascension and Natal account for 10% and 17% of the datasets, respectively. 

Witte17 concluded that O3 trend assessments could not be made using original and 

initially reprocessed Réunion data due to the solution change after 2007/08, for which 

transfer functions had not yet been applied. We examine the effect of applying this 

additional transfer function to the reprocessed Réunion dataset by comparing time series of 

TCO. In this study, sonde TCO is calculated by integrating O3 partial pressure up to 10 hPa 

and adding an O3 climatology from balloon burst to the top-of-the-atmosphere, taken from 

the McPeters and Labow [2012] look-up table (reported in Dobson Units (DU)). From Figure 

2a the reprocessed data used in Witte17 show a significant difference in mean TCO of 16.4 

DU between the 1998–2006 and 2007–2016 time periods (black dashed lines). However, 

this difference is reduced to 6.5 DU (blue) after the additional transfer function has been 

applied. Thus, as of this study, the significant discontinuity found by Witte17 has almost 

disappeared, allowing for meaningful trend assessments. Later, we show the impact of the 

uncertainty of the transfer function to the total ozone uncertainty budget. Further 

evaluation of this newly homogenized dataset has been carried out by Thompson17.  

Results of applying a transfer function to the early part of the Nairobi dataset are shown 

in Figure 2b. As with Réunion, Nairobi retains a significant discrepancy of 9 DU, even after 

reprocessing, between the 1998-2010/05 and 2010/06-2016 periods (black dashed line for 

the reprocessed-only dataset) that disappears after transfer functions are applied (blue 

dashed line).  
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We examine more closely the impact of applying transfer functions to the Réunion and 

Nairobi datasets by comparing TCO values with OMI (Version 3) TCO overpass data [Levelt et 

al., 2006] as a reference. Results are shown in Figure 3 as histograms of the percentage 

difference with respect to sondes. Biases with respect to OMI at Réunion are significantly 

reduced after transfer functions have been applied (blue hashes, Figure 3a), where the 

Gaussian peak shifts from 4.3% to 0.7%. Most of the agreement falls within ±5%. The 

homogenized Nairobi data, in Figure 3b, show a different impact. The Gaussian peak shifts 

from +2.2% to -1.5%, and the sonde bias with respect to OMI changes from a mostly positive 

(high-bias) regime to a negative (low-bias) regime. This low-bias relationship between the 

Nairobi sondes and satellite data is consistent with most of the SHADOZ network datasets 

[Hubert et al., 2016; Thompson17]. Like Réunion, the agreement is ±5% making both these 

sites a stable reference for trends analysis and satellite validation. 

 

4. The Ozone Uncertainty Equation 

 

To improve the ozonesonde measurement system Smit12 introduced the first 

instrumental uncertainty equation of the ECC type ozonesonde based on the current best 

knowledge of the ECC performance under lab conditions. After reprocessing to remove all 

known inhomogeneities, the overall uncertainty in PO3, shown in Equation 2, is the square 

root of the sum of the squares of the uncertainty in each term of the ozone partial pressure 

equation (Eqn. 1). The uncertainties are assumed to be random and Gaussian and therefore 

follow the Gaussian propagation of uncertainty. In equation 2, the assumption is not only 

that the uncertainties are random, but also uncorrelated.  

    

   
  

             

        
  

   

  
 
 

   
   

  
 
 

   
   

  
 
 

    
   

  
 
 

  (2) 

where  

ΔPO3 = ozone partial pressure uncertainty 

ΔIM = sensor current uncertainty 

ΔIB = background current uncertainty 

ΔηC = conversion efficiency uncertainty  

ΔΦP = pump flow-rate uncertainty at the ground 

ΔψP = pump flow efficiency uncertainty below 100 hPa 
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ΔTP = pump temperature uncertainty. 

The individual uncertainties are defined as a relative error (Δx)/x, and can be expressed 

as a percentage. The value of PO3 and its error, or uncertainty in this case, can then be 

expressed as the interval PO3 ± ΔPO3.  

The first application of equation 2 was done for the McMurdo, Antarctic station dataset 

(reference analysis can be downloaded at: 

http://wwwdas.uwyo.edu/~deshler/NDACC_O3Sondes/O3s_DQA/O3S-

DQAGuideline_Summary_OzUncertainty_td.pdf). Van Malderen et al. [2016] also applied 

Smit12 uncertainties to the ECC ozonesonde measurements at Uccle (Belgium). Sterling et 

al. [2017] applied the formula to two SHADOZ stations (Hilo, Hawaii and Pago Pago, 

American Samoa), Boulder CO, and the South Pole, and Tarasick et al. [2016] applied their 

own uncertainty estimates to the Canadian ozonesonde records, taking into account the 

uncertainty terms in equation 2.  We take advantage of theses studies to compare with our 

methods and results. 

Where applicable, based on Deshler et al. [2017] calculations, the overall uncertainty of 

the transfer function, ΔTF, is 5%. We apply the Smit12 approach and add this uncertainty to 

the uncertainty in the conversion efficiency term.  

 Whereas in the Report the ΔΦP/ΦP term includes ΔψP/ψP, we separate the two terms 

for clarity. The rest of the instrumental uncertainty terms are defined in subsequent sub-

sections.  

Note, this study focuses only on the uncertainties of the ozonesonde instrument and 

does not take into account uncertainties due to radiosonde pressure offsets (offsets that 

lead to errors in the height registry of the computed ozone). Tarasick et al. [2016] do not 

correct for radiosonde errors but include a pressure offset uncertainty for the VIZ (±1 hPa) 

and Vaisala RS-80 (±0.5 hPa) manufacturers based on previous studies. Conversely, Sterling 

et al. [2017] corrects for pressure offsets but does not include the radiosonde pressure 

uncertainties in their ozone uncertainty calculations. The challenge of determining 

radiosonde errors, particularly in the non-GPS era, is still an on-going debate. 

 The uncertainty in the ozone current, ΔIM, is ±0.01 μA for currents less than 1.0 μA 

and 1% elsewhere. This is taken as the overall resolution of the digital interface board 

[Smit12].  V2 and V7 interface boards have similar piecewise uncertainties [Sterling et al., 

2017]. The Vaisala OIF11 and current generation OIF92 interface boards have an accuracy of 
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0.01 μA and 0.001 μA, respectively (taken from the Vaisala  manufacturer brochure). 

Uncertainty analysis done for the McMurdo station dataset used ΔIM = 0.1 μA, while this 

uncertainty was not taken into account by Tarasick et al. [2016]. Sterling et al., [2017] used 

similar ΔIM during the digital era of the measurements that started in the 1990’s.  

SHADOZ sites encompass a wide range of radiosonde/ozonesonde systems that use 

a variety of interface boards with varying resolutions. For example, the MODEM radiosonde 

used at Réunion, Lockhead-Martin-Sippican (LMS) used at Ascension and Natal, and Vaisala 

employed at a number of SHADOZ sites use their own interfaces, which have different AD 

converters and possibly different thermistors. This may impact the uncertainty estimate for 

the cell current and pump temperature measurement; however further investigation is 

needed to determine the effect, if any. In this study, we simplify ΔIM to ±0.01 μA for currents 

less than 1.0 μA and 1% elsewhere, as recommended by Smit12. 

 Van Malderen et al. [2016] noted equation 2 does not take into account the 

uncertainty due to the time lag of the response of the IM, TP, and IB measurements. Tarasick 

et al. [2016] incorporated an e-folding response time to the ozone gradient to take into 

account slow ECC responses to changes in ozone due to variable ascent rates. 

 

4.1. Background Current Uncertainty, ΔIB 

 

The background current (IB) is the residual current measured by the sonde when 

sampling ozone-free air. Conventional processing of the sonde telemetry assumes that the 

background current remains constant during flight. There is no statistically robust method 

for estimating the uncertainty of the background current, ΔIB. JOSIE studies used small 

sample sizes, fewer than 14 ECC sensors, to conduct the background current experiments 

published in Smit et al. [2007] and recommended in the WMO/GAW Report. During JOSIE-

1996, significantly high backgrounds were recorded due, in part, to the slow decay in the 

ozone response and not allowing enough time for the background to drop lower [Johnson et 

al., 2002]. Laboratory experiments by Vömel and Diaz [2010] tracked the decay of the cell 

current after exposure to ozone and showed that a much longer period of time (hours) can 

be required to approach initial values. There is also a dependence on the SST where 

experiments have shown a relationship between buffered KI SST and high ozone 

measurements due to a hysteresis effect (additional side reactions) that offset the ideal 1:1 
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stoichiometric ratio expected from the O3 to I2 reaction [Barnes et al., 1985; Davies et al., 

2000; Johnson et al., 2002].  

To further confound the issue, SHADOZ sites measure IB in a number of different ways: 

some are based on an average value, the minimum value recorded during the conditioning 

process, prior to launch either in the lab or at the launch site, or set to an upper limit 

threshold for IB values that exceed it. The myriad ways in which IB is recorded are 

compounded by the quality of the ozone destruction filters used that does not guarantee 

uniformity and introduces a source of random uncertainty that cannot be easily quantified 

[Reid et al., 1996]. This is particularly true for ozonesondes flown in the tropics where high 

humidity affects the ozone removal efficiency of the filter [Newton et al., 2016]. Specific to 

our study that uses tropical-based sonde data, we use the 1-σ uncertainty of ±0.03 μA for 

sites that use the ENSCI ECC sensors and ±0.02 μA for SPC sensors based on Witte17 

calculations. ΔIB is doubled, where IB is missing or exceeds the threshold value of 0.05 μA 

(based on Witte17 reprocessing criteria). Sterling et al. [2017] adopted the same strategy 

using ΔIB = ±0.02 μA for ENSCI ECCs. For the McMurdo measurements, ΔIB was higher for 

SPC (±0.05 μA), whereas Tarasick et al., [2016] took a different approach applying a 

pressure dependent correction. Table 3 summarizes the ΔIB applied for the eight 

reprocessed sites based on the ECC sensor used. In general, one ECC type dominates a single 

site’s dataset. Included, is the percent of profiles for which IB is missing or exceeds the 0.05 

μA threshold. The large spread of these percentages illustrates the difficulty in establishing 

low backgrounds in tropical environments, as well as, the variation in technique. For 

example, Costa Rica applies a constant 0.02 μA to all profiles, and Natal recharges the cells 

with new solutions to determine the final background prior to launch.   

In Eqn 2 IB is subtracted from Im in the denominator and thus its value has a significant 

impact on that term, particularly in the troposphere where Im in the tropical troposphere is 

typically less than 1 μA and IB can be as high as 0.05 μA. Notably, the tropopause is a region 

of very low ozone, usually < 1 mPa in the tropics. Where PO3 measures less than 1 mPa, Im 

can approach IB, thus increasing the dominance of the (ΔIM)2+(ΔIB)2/(IM- IB)2 term 

(abbreviated to ΔIB/ ΔIM hereafter) in Eqn 2.  
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4.2. Conversion Efficiency Uncertainty, ΔηC/ηC 

 

The conversion efficiency, ηC, comprises two parts: (1) the absorption efficiency (αO3) 

from the gas to liquid phase in the sensing solution and (2) the stoichiometry of the O3:I2 

relationship (SO3:I2) which is assumed to be 1:1. Interferences with this one-to-one 

relationship can arise from the buffering of the solution [Johnson et al., 2002; Vömel and 

Diaz, 2010]. Setting the αO3 equal to one applies to cases where the volume of the cathode 

solution is 3.0 cm3. For SHADOZ sites, such as Ascension, Natal, Irene and Réunion, that use 

a 2.5 cm3 cathode volume, we use the following equations in Smit12 to calculate αO3, as a 

function of pressure, P: αO3(P) = 1.0044 – (4.4×10-5)×P for 100 hPa < P < 1050 hPa, and αO3(P) 

= 1.0 for P ≤ 100 hPa. In the ozone partial pressure equation (Eqn. 1), the conversion 

efficiency is assumed to be unity and is typically excluded from the ozone equation. 

However, the uncertainty of this unity assumption does contribute to the overall ozone 

uncertainty. These are constant unitless values for a cathode solution volume of 3.0 cm3. 

Thus, ΔηC/ηC can be expressed as,  

   

  
    

    

   
 
 

   
       

      
 
 

      (3) 

where αO3 = 1.0, ΔαO3 =  ±0.01, SO3:I2 = 1.0, and ΔSO3:I2 = ±0.03. ΔαO3 is ±0.01 for both cathode 

volumes (Gaussian 1-σ value taken from Davies et al. [2003]). This is a simplistic approach 

because SO3:I2 will increase over the course of the sonde flight due to slow side reactions 

involving the phosphate pH buffers [Davies et al., 2000; Johnson et al., 2002]. However, at 

present changes in SO3:I2, while recognized, are poorly understood and require further 

research. Where a transfer function is applied, 0.05 is added to the ΔSO3:I2 term [Smit12].  

 

4.3. Pump Flow-rate Uncertainty at the Ground, ΔΦP/ΦP 

 

A common procedure in the ECC conditioning is the use of a soap bubble flow-meter 

method to measure the volumetric flow rate of the pump, ΦP [ml/s]. However, calculating 

ΔΦP/ΦP is not straightforward because not all quantities are known. Witte17 applied 

correction formulae found in section 8.4 of Smit12 that compensates for the evaporation of 

the soap bubble solution and rely on the saturated water vapor pressure under ambient P-T-

U conditions (CPH).  There is a second correction that takes into account the temperature 
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difference between the internal pump base temperature and the ambient room 

temperature, CPL=(Tpump - Tlab)/Tlab. Our calculations reveal ΔCPL values << 1 and thus we 

exclude this term which has a negligible impact on the correction of ΦP and its uncertainty. 

The final equation to calculate ΔΦP/ΦP can then be expressed as,  

   

  
    

             

            
 
 

               (4) 

where ΔΦreprocessed/Φreprocessed = ±0.02 and ΔCPH is based on the minimum and maximum CPH 

values in each sites dataset, i.e. ±(CPH,High - CPH,Low)/2 [Smit12]. Here, we assume the 

uncertainties in the reprocessed flow-rates are within the uncertainty of the original 

measured quantities. Table 4 summarizes the ΔCPH and ΔΦreprocessed/Φreprocessed computed for 

the eight sites. At Irene and Kuala Lumpur, for which lab P-T-U are not documented, we 

double the ΔΦreprocessed/Φreprocessed term to ±0.04 and calculate ΔCPH using the Witte17 

tropical climatology of Tlab=25 ± 5°C, RHlab=50 ± 25%, and Psfc=mean pressure surface at 

launch. In the case of Costa Rica, Hanoi, and Nairobi for which a fraction of their datasets 

are missing lab P-T-U, we use the mean CPH for flights with known lab conditions. ΔCPH 

remains the same since the mean does not affect the min/max range of CPH values and 

ΔΦreprocessed/Φreprocessed = ±0.04. 

 

4.4. Pump Flow Efficiency Uncertainty, ΔψP/ψP 

 

The pump flow rate, ФP, measured during the conditioning procedures is approximately 

constant up to 100 hPa and decreases steadily to the top of the atmosphere due to 

instrumental degradation at low pressures [Komhyr, 1986; Komhyr et al., 1995]. From 

Equation 1, the pump flow efficiency, ΨP, is based on empirically derived pump correction 

factors (PCF) that take into account the efficiency loss in ФP as a function of pressure. This 

study follows the WMO/GAW Report recommendations and applies the Komhyr [1986] PCF 

for sondes launched with an SPC sensor and Komhyr et al. [1995] PCF for ENSCI sensors. 

These PCF compensate for the effect of the buffer that creates side-reactions in the solution 

[Johnson et al., 2002]. The exception is at Hanoi for which almost half the dataset uses a 

NOAA sensing solution recipe of 2% unbuffered KI. The unique formula requires its own PCF 

due to the lack of the buffer in solution [Johnson et al., 2002]. These three pump flow 
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efficiencies and their ±1-σ uncertainties (±ΔψP) are listed in Table 5. We can interpret the 

effect of the buffer at low pressures as the difference in ΨP between the Johnson et al. 

[2002] and both Komhyr look-up tables: the difference ranges from 3% at 100 hPa to 15% at 

5 hPa. The Deshler et al. [2017] transfer function that corrects for solution changes between 

the 0.5% half buffer and 1.0% full buffer solution intrinsically takes into account the effect of 

the buffer and therefore, its overall uncertainty of ±5% carries within it the uncertainty in 

the buffering.  

The O3S-DQA panel has recommended a revised table of PCF ±ΔψP based on the average 

of combined laboratory calibration experiments conducted by NOAA/ESRL/GMD, University 

of Wyoming, and JMA (Japan Meteorological Agency). This study uses the revised ±ΔψP 

values included in Table 5. Note these uncertainties are similar to those of Johnson et al. 

[2002] for a 2% unbuffered sensing solution type; thus, we expect ΔψP/ψP values to be 

similar across the eight study sites. The revised ±ΔψP values are considered to be a more 

realistic representation of the PCF uncertainties and are better quantified, being based on 

hundreds of profiles (refer to Table 2 in Johnson et al. [2002]). Refer to Table 3 for a 

summary of ECC sensor used at each site.  

 

4.5. Pump Temperature Uncertainty, ΔTP/TP 

 

All SHADOZ sites use either an ENSCI-Z or SPC-6A model that measures the pump 

temperature internally. These measurements are considered to be a close approximation to 

the ‘true’ pump temperature that is measured in the vicinity of the moving piston, Tpiston 

[Smit12]. Witte17 reprocessing includes a correction that accounts for the temperature 

difference between Tpiston and the internal pump temperature. For SHADOZ datasets, the 

ΔTP/TP equation is expanded to  

   

  
    

             

            
 
 

   
        

            
 
 

      (5) 

where both ΔTreprocessed and ΔTpiston are ±0.5°K [Smit12]. As with the reprocessed flow-rates, 

we assume the uncertainties in the reprocessed pump temperatures are within the 

uncertainties of the original measured values. Witte17 replaced missing pump temperature 

profile data at Kuala Lumpur (1998-2005) and Irene (1998-2006) with climatological values. 
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For these datasets the 1-σ values of the climatology (range between 3°- 4°C) are used to 

compute ΔTreprocessed (see Figure A1 in Witte17).  

 

5. Ozone Uncertainty Estimates in SHADOZ Profiles, ΔPO3 

 

For the eight reprocessed SHADOZ sites, we compute ΔPO3 and the individual 

uncertainty terms defined in Eqn 2 for each profile. The overall profile average of the 

uncertainty terms for each site is also shown in Figure 4. The vertical resolution is 50 m. We 

show the impact of applying a 5% transfer function uncertainty to the Ascension, Natal, 

Nairobi, Réunion, and Hanoi datasets (Fig. 4 a-e, right panels, dashed black line). Note that 

the overall mean ΔPO3 profile will lie between the solid black line, which is the dataset for 

which no transfer function is applied, and the dashed line. From Figure 4 (right panels) we 

observe: 

 All sites show a peak in ΔPO3  around the tropopause region (15±3km) due to IB, as 

nicely illustrated in Fig. 1 in Vömel and Diaz [2010].  

 The uncertainty in the background and O3 current term (ΔIB/ΔIM, red) dominates the 

overall uncertainty of PO3 in the troposphere. Where transfer functions have been 

applied (Fig. a-e), the conversion efficiency term (orange) becomes a significant 

contributor to the uncertainty. 

 The uncertainties in the conversion efficiency (orange) and flow-rate (blue) terms 

dominate the overall uncertainty of PO3 in the stratosphere. 

 The application of transfer functions (Fig. 4 a-e, purple) has a significant impact on 

the overall uncertainty of PO3 throughout the profile.  

 The contribution of the pump temperature uncertainty term (ΔTP/Tp, profiles in 

green) is minimal, accounting for only a few percent. 

 Overall uncertainties are within 15%. Notable exceptions are at Hanoi (Fig. 4e, 

dashed line) and Kuala Lumpur (Fig. 4f) around the tropopause region. 

 Costa Rica (Fig. 4g) displays a unique maximum in ΔPO3 and ΔIB/ΔIM between 2-7km. 

 Irene results show the smallest PO3 uncertainties (less than 7%), relative to the other 

sites (Fig 5h), while Kuala Lumpur shows the largest values of ΔPO3. 
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In the vicinity of the tropopause (15 ± 3  km), PO3 is a minimum (Fig. 4, left panels). This is 

particularly true for Hanoi and Kuala Lumpur datasets that show the lowest mean PO3 

relative to the other sites. As the sensor current (IM) approaches the measured background 

current value (IB), the significant increase and dominance in the ΔIB/ΔIM term indicates that 

the sensor measurement is approaching its detection limit. Here, we define the detection 

limit where the total uncertainty is equal to the measured signal (~0.02-0.05 μA range). This 

is particularly true at Nairobi where the ΔIB/ΔIM uncertainty term matches the transfer 

function uncertainty between 10-18 km (Fig. 4c, right panel). Further investigation reveals a 

prevalence of IB > 0.05 μA in the Nairobi metadata which contributes to a doubling of its 

uncertainty. In contrast, Irene (Fig. 4h) shows the highest measurements of PO3 in the same 

region concurrent with the lowest values in the ΔIB/ΔIM and ΔPO3. Irene is located in the very 

edge of the sub-tropics and can exhibit mid-latitude behavior (i.e. stratospheric fold events), 

as well-as southern hemisphere pollution transport [Thompson et al., 2014]. Hanoi and 

Kuala Lumpur are the only Asian tropical sites in the SHADOZ network and due to their 

geographic proximity to one another likely exhibit similar dynamics and transport features 

in the UT/LS (upper troposphere/lower stratosphere) region [Ogino et al., 2013]. Thompson 

et al. [2012] shows Hanoi and Kuala Lumpur have a similar annual cycle with almost double 

the O3 amount at the Hanoi site throughout the troposphere. In fact, values of O3 at Kuala 

Lumpur and Hanoi are among the lowest relative to other SHADOZ sites, corroborating the 

Thompson et al. [2012] result. Both sites show a higher gradient in ΔPO3 and a larger peak > 

15%, relative to the other sites.  

As noted above, there is a second peak in ΔPO3 in the lower troposphere in the Costa 

Rican dataset (Fig. 4g). There is a notch in PO3 between 2-7 km (left panel) that is due to 

sulfur dioxide (SO2) interference from the nearby active Turrialba volcano [Morris et al., 

2010; Diaz et al., 2012]. Profiles that record near-zero IM due to volcanic SO2 plumes are not 

uncommon in a given year [Diaz et al., 2012]. This is seen in the right panel of Figure 4g 

where the uncertainty in the IB/IM term (red) increases significantly as IM approaches IB, and 

thus the detection limit of the sensor. The dataset reveals that roughly 10% of all profiles 

have SO2 interference, with years 2010-2012 being particularly volcanically active. This 

uncertainty peak is really due to the reduction in the conversion efficiency (ηC), whereby SO2 

interference reduces ηC to zero. This is not captured in the uncertainty discussion because 

chemical interference is not assumed in Equations 1 and 2. The near-zero cell current 
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measurements blow up the ΔPO3 and ΔIB/ΔIM terms generating values that are much larger 

than they should be.  

Van Malderen et al. [2016] applied corrections to the Uccle dataset for high-SO2 

interference in the Brewer-Mast ozonesondes using in-situ SO2 measurements from a 

nearby site. No corrections were necessary during the ECC sonde era (1996-present) 

because SO2 concentrations had diminished to levels that would not impact the ECC 

measurements. By filtering the obvious SO2 layers in the Costa Rican dataset the peak would 

still be present but not as large or as dominant [Thompson et al., 2010]. 

Figure 5 presents the uncertainty terms arranged by season. PO3 is shown in the 

background in silver. Similarly, we find that ΔPO3 is a maximum around the tropopause and 

is dominated by the ΔIB/ΔIM term. In particular, in the vicinity of the tropopause region we 

observe in Figure 5: 

 The overall uncertainty of PO3 is the highest in DJF and MAM (with or without 

transfer functions) for sites in the Atlantic and Africa: Ascension, Natal, Nairobi, 

Réunion and Irene. 

 The overall uncertainty of PO3 is highest in DJF and SON at the two northern tropical 

Asian sites, Hanoi (Fig. 5e) and Kuala Lumpur (Fig. 5f), where ΔPO3 peaks are over 

20%. ΔPO3 gradients are highest for these two sites. 

 High ΔPO3 in the Costa Rican dataset (Fig. 5g) due to volcanic SO2 interference 

between 2-7 km occurs throughout the year. 

 Relative to other sites, the overall uncertainty of PO3 is smallest at Irene for all 

seasons (Fig. 5h). SON is a minimum (ΔPO3 is less then 8%). 

Overall, the ΔIB/ΔIM term dominates ΔPO3 in the troposphere. The exception is where PO3 

measurements are high in the lowermost troposphere (silver profile), such as during the 

biomass burning season in SON over the Atlantic sites: Ascension (Fig. 5a), Natal (Fig. 5b), as 

well as Réunion (Fig. 5d) and Irene (Fig. 5h), and where the boundary layer is polluted such 

as at Hanoi (Fig 5e). PO3 is elevated below 5km for all seasons in the Irene dataset (Fig. 5h), 

accounting for the relative minima in ΔIB/ΔIM (red). For all seasons, Kuala Lumpur (Fig. 5f) 

stands out as having the highest ΔPO3 in the tropopause region, particularly in DJF and SON, 

where uncertainties peak sharply at around 30%, coincident with high ΔIB/ΔIM (red). 

Interestingly, the Nairobi dataset also shows a relative ΔPO3 maximum in DJF (Fig. 5c). Logan 
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at al. [2003] found that ozone concentrations at Nairobi are lowest from December to April 

from the tropopause to 50 hPa (~20 km). This corroborates the uncertainty results in Fig. 5c 

that show relatively higher ΔPO3 during DJF and MAM where the ΔIB/ΔIM uncertainty term 

peaks at 15 ± 3 km. 

Examples of applying uncertainties to profile comparisons with satellite can be found in 

Figure 6. We use Microwave Limb Sounder (MLS) v4.2 overpass profiles [Waters et al., 2006] 

at pressure levels between 261-10 hPa matched to the sonde location (within 200 km and 

18 hrs). The four profile examples represent a cross-section of reprocessing techniques. 

Transfer functions were applied to Nairobi and Réunion profiles (Fig. 6a-b), Kuala Lumpur 

profiles incorporated a pump temperature climatology [Witte17] (Fig. 6c), and Costa Rica is 

a site that required very little reprocessing and therefore had a minor impacts to the overall 

dataset, relative to the original v5 dataset [Thompson2017]. One notes patterns of 

agreement/disagreement on a profile-by-profile basis. Applying sonde uncertainties will 

provide a robust metric of evaluating the accuracy of current and future generations of 

satellite O3 profilers, particularly in the climate sensitive UT/LS region. 

How do our uncertainty estimates compare with previous studies? Smit and ASOPOS 

[2014] WCCOS simulation of a tropical profile estimates a similar range of ΔPO3 values that 

also maximize around the tropopause (up to ~17%) due to the dominance of the ΔIB/ΔIM 

term. The main difference is that this term dominates ΔPO3 values throughout the profile, 

whereas in our study, the flow-rate and conversion efficiency uncertainty dominate in the 

stratosphere. Sterling et al. [2017] present ΔPO3 mean profiles for April and October at Hilo, 

Hawaii and American Samoa (two SHADOZ sites), which we interpret as similar to the 

seasonal plots shown in Figure 5. Here, we observe their range of ΔPO3 values are similar, 

i.e. maxima at the tropopause (>10%) and minima else where in the profile (~5%). Sterling et 

al. [2017] show a relative minimum (maximum) in MAM (SON), similar to that shown for 

Hanoi and Kuala Lumpur (Fig. 5e-f). In comparison, mid- and high-latitude ozonesonde 

profiles from previous studies show that (1) the overall uncertainty is smaller, i.e. less than 

~10% throughout the profile, (2) the conversion efficiency uncertainty term is a significant 

contributor to ΔPO3 through-out the profile, and for some sites like Uccle be the dominant 

uncertainty term, (3) the impact of the ΔIB/ΔIM term remains an important contributor to 

ΔPO3 around the tropopause [McMurdo uncertainty analysis (Terry Deshler, personal 
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communication); Smit and ASOPOS, 2014; Tarasick et al., 2016; Van Malderen et al., 2016; 

Sterling et al., 2017]. 

 

6. Ozone Uncertainty Estimates in SHADOZ TCO  

6.1. Calculating Total Column O3 Uncertainty, ΔTCO 

 

Profiles of O3 partial pressure are integrated up to 10 hPa to generate integrated column 

amounts of O3 in DU. To capture the O3 maximum we exclude profiles that burst at 

pressures less than 15 hPa. We limit our column integration to 10 hPa based on the Witte17 

recommendation. They found the accuracy of O3 profile measurements below 10 hPa with 

respect to MLS did not improve even after reprocessing and remain highly variable and 

suspect. To compute the sonde TCO values the McPeters and Labow [2012] O3 climatology is 

used to extract the O3 amount from the sonde’s balloon burst to the top of the atmosphere 

(TOA). This is termed the ‘O3 residual’ in this paper (PO3residual). McPeters and Labow [2012] 

derived an O3 climatology based on combining MLS (2004–2010) and ozonesonde (1988-

2010) datasets. The climatology is a look-up table of monthly averaged ozone profiles from 

the surface to the TOA for ten-degree latitude zones. Previous studies have used the same 

sonde TCO formulation when analyzing SHADOZ data [Witte17; Thompson17 and references 

therein]. 

As a first approach, we compute sonde TCO uncertainties (ΔTCO) by integrating the O3 

partial pressure uncertainties (ΔPO3) generated from Equation 2 and adding the uncertainty 

in the O3 residual amount (ΔPO3residual), i.e. ΔTCO = ΔPO3 + ΔPO3residual. For example, if 

                            
          

   
, then                                    

   

          
  

          

   
. 

To generate an equivalent look-up table of ΔPO3residual uncertainties, we use the table of 

monthly averaged 1-σ O3 mixing ratios taken from McPeters and Labow [2012] and convert 

to DU following Ziemke et al. [2001] formulation (refer to equation 1 in that study). Thus, we 

can extract the ΔPO3residual at the sonde’s lower limit altitude (15-10 hPa) in the same way. 

Look-up tables of ΔPO3residual for the tropical latitude zones between 15-8 hPa are found in 

S1, in the supplementary material. For example, for a 10 hPa pressure burst the PO3residual ± 

ΔPO3residual range is (48-58 DU) ± (1.5-3 DU). We recognize this approach may be an 
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oversimplified calculation and hope this study motivates future evaluation and refinement 

of this method. 

 

6.2. Comparisons with TOMS and OMI overpasses 

 

As a reference, sonde TCO ± ΔTCO are compared with satellite overpass TCO from Earth 

Probe Total Ozone Mapping Spectrometer (EP-TOMS V8.6 provided by the TOMS/OMI 

science team, McPeters et al. [1998]) and the Ozone Monitoring Instrument (OMI V3, Levelt 

et al. [2006]). TOMS and OMI have a local equator crossing time of 11:16 and 13:30, 

respectively. Sonde launch times (local) vary between 10:00 and 1500. From Figure 7 we 

observe that, overall, the overpasses are within the uncertainty of the sondes (red shading). 

Table 6 gives a summary of each site’s mean TCO ± ΔTCO, and includes the individual and 

combined TOMS and OMI mean overpass TCO ± 1-σ standard deviation values. Mean ±ΔTCO 

at the eight sites are comparable to ±1-σ from the satellite overpass data. The exception is 

at Kuala Lumpur where there are many cases in which TOMS and OMI are outside the 

uncertainty range (Fig. 7f, red shading). This amounts to a 5% offset overall. Given that 

there is limited metadata information for this site [Witte17], we speculate that the offset 

seems to be consistent with the use of a non-standard sensing solution formulae, similar to 

what was discovered at Réunion and Nairobi. 

Ascension, Natal, Nairobi and Réunion reprocessed datasets (Fig. 7a-d) show 

significantly larger O3 offsets relative to the TOMS period (1998-2004/09) compared to the 

OMI time series. This pattern was also noted for most of the SHADOZ stations in 

Thompson17. The cause for this persistent low-bias is unknown and cannot be explained by 

reprocessing and system differences alone. Whereas Ascension and Natal used the 

Lockheed Martin Sippican radiosonde/ozonesonde system during that entire period, 

Réunion used a Vaisala RS80 system switching to a Modem system (2007-present). The low–

bias relative to TOMS is not readily apparent in the Irene reprocessed dataset (Fig. 7h) for 

which a Vaisala system is used and is the only sub-tropical site in this study with a data 

record extending back to 1998. However, Kuala Lumpur, which also used a Vaisala system 

during the TOMS period, show a much larger sonde-TOMS difference compared to sonde-

OMI in the time series (Fig. 7f). Further investigation reveals a  discontinuity between the 

TOMS and OMI time-series at all sites, and in particular, at Kuala Lumpur (Fig. 7f, TOMS 
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overpasses in black). Table 6 includes the mean TCO for the individual TOMS and OMI 

periods at each site and reveals an almost 10 DU difference between averaged TOMS and 

OMI TCO with TOMS measuring higher than OMI (right column). For example, at Kuala 

Lumpur TOMS measures 11 DU higher TCO than OMI (TOMS=267.3 ± 14.5 DU versus 

OMI=256.1 ± 11.9 DU from Table 6). The Kuala Lumpur sonde dataset does not show a 

similarly large discontinuity in its TCO time series between the TOMS and OMI periods 

(249.7 ± 14.9 DU during the TOMS period versus 245.8 ± 14.9 DU during the OMI period). 

Interestingly, the agreement between Irene sonde TCO and TOMS is excellent; however, the 

agreement between TOMS and OMI is offset by 9 DU (Table 6, right column). From Table 6, 

excluding Irene, the average difference between sonde and TOMS is 16 DU and is 

significantly higher than the 4 DU difference computed for the difference between sonde 

and OMI. This discontinuity is likely due to a change in the TOMS processing algorithm and is 

currently being investigated by the TOMS/OMI science team. This TOMS to OMI TCO 

discontinuity is not apparent in Witte17 and Thompson17 that used an older version 8 

TOMS overpass dataset taken from the AVDC (Aura Validation Data Center – 

https//avdc.gsfc.nasa.gov).  

The sonde low-bias at Costa Rica (Fig. 7g) observed at the end of 2015 points to a 

change in the ENSCI instrument. Other SHADOZ sites (Samoa, Fiji, and Hilo) that use ENSCI 

during that period also exhibit a low-bias relative to satellite overpasses [Thompson17]. The 

MLS/sonde profile comparison in Fig. 6d highlights the significant underestimate in the 

sonde (red) observed after 2015 in Fig. 7g and in Thompson17. The sonde underestimate 

appears above 50 hPa and is typical of sonde/MLS profile comparisons after 2015. 

 

7. Summary 

 

For the first time, uncertainty estimates in profile and total column O3 are computed 

using reprocessed data from eight SHADOZ sites. As a first approach, we also create a look-

up table of monthly averaged O3 residual uncertainties to compute the uncertainty in sonde 

TCO. Variations in reprocessing procedures at each site require a tailored approach when 

calculating uncertainties. For example, missing metadata such as background current and 

flow-rate measurements require climatological values specific to each site, and thus a 

doubling of the uncertainty, and not all sites require a transfer function. 
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A significant fraction of the Réunion and Nairobi datasets have been homogenized with 

the use of transfer functions; 63% and 64%, respectively. We demonstrate the efficacy and 

success of applying the Deshler et al. [2017] formulae to generate consistent and stable 

reference datasets for trends analysis and satellite validation. Biases are reduced (Réunion 

=0.7% and Nairobi =-1.5%) and preliminary agreement with OMI is within 5%. 

Overall, O3 profile uncertainties are less than 15% with a persistent maximum in the 

vicinity of the tropopause where O3 values are low and approach the detection limits of the 

ECC sensor. Here, the background and sensor current uncertainties dominate, as well as in 

the troposphere. Stations for which transfer functions have been applied show a significant 

contribution from the conversion efficiency uncertainty.  In the stratosphere, the conversion 

efficiency and flow-rate uncertainty terms dominate. We observe a unique second peak in 

the free-troposphere in the Costa Rican dataset due to SO2 interference from volcanic 

plumes. Seasonally, uncertainties are a maximum in MAM when O3 values are the lowest. 

Exceptions are at Hanoi and Kuala Lumpur, the only two northern tropical Asian sites in the 

SHADOZ network. Both display the highest uncertainties in DJF and SON, indicating unique 

meteorology relative to the other sites. The Irene dataset displays the lowest O3 

uncertainties, among the eight sites.  

Overall, TCO uncertainties are less than 15 DU and represent ~5-6% of the TCO. 

TOMS/OMI overpass comparisons are within the sonde TCO uncertainties with the 

exception of Kuala Lumpur for which the sondes are low-biased by about 5%. The persistent 

offset mimics that found in the Réunion and Nairobi datasets for which an error in the 

sensing solution formulae was found. However, due to the current lack of verification in the 

metadata, we can only speculate on the offset. In addition, there is a discontinuity between 

the latest TOMS v8.6 and OMI TCO overpasses at all sites. TOMS measures higher TCO than 

OMI on the order of 10 DU that is not readily apparent in the older version 8 overpasses 

used in Witte17 and Thompson17 studies.  

The advantage of doing a detailed uncertainty analysis is that it reveals areas of the 

measurements where we can refine operational procedures to reduce the uncertainty, and 

where additional research is needed to improve the basics of this measurement.  1) To 

improve O3 measurements in the UT/LS in SHADOZ, we need to improve our understanding 

of the background current. This means that the actual measurement as done right now 

needs to be better quality controlled, i.e. using a high quality zero ozone air filter, time of 
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measurement after reconditioning, and consistency of procedures. For example, the large 

spread of SHADOZ IB observed in Witte17 (range is 0.01 μA - 0.12 μA) is a result of varying 

procedures and not a property of the sonde instrument. It also means that the definition of 

the background current needs to be studied in greater detail. 2) To reduce the uncertainty 

of the middle stratospheric measurements, i.e. region of high O3, we need to better 

characterize the pump efficiency and conversion efficiency at low pressures. This is also the 

reason why transfer functions become pressure dependent at lower pressures. 3) Careful 

and complete metadata collection of lab P-T-U during preparation will reduce the 

uncertainty of the RH correction (ΔCPH), and careful metadata collection of the O3 destruct 

filter being used during the background measurements will help in estimating the quality of 

that measurement.  
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Table 1. SHADOZ sites used in this study.  

*
Note there are data gaps. 

**
Previous sites, Alajuela and Heredia, are within 0.5° of San Pedro (current site). 

 
 
  

Site Lat, Lon Time Period Profile Total 

Ascension Is., U.K. 7.98S, 14.42W 1998 – 2010/08, 2016
*
 632 

Costa Rica 
**

 9.94N, 84.04W  2005/07 – 2016 510 

Hanoi, Vietnam 21.02N, 105.80E 2004/09 – 2016 245 

Irene, S. Africa 25.90S, 28.22E 1998/11–2007, 2012/09–2016
*
 337 

Kuala Lumpur, Malaysia 2.73N, 101.70E 1998–2010/02, 2012/03–2016
* 

388 

La Réunion, France 21.10S, 55.48E 1998 – 2016 618 

Nairobi, Kenya 1.27S, 36.80E 1998 – 2016 827 

Natal, Brazil 5.42S, 35.38W 1998–2011/05, 2014/09–2016
*
 595 



 

 
© 2018 American Geophysical Union. All rights reserved. 

Table 2. Summary of transfer functions applied for each SHADOZ site. Conversions applied 
are to WMO recommended ECC sensor/SST pairs: ENSCI/0.5% (half buffer) and SPC/1% (full 
buffer).  
Site Transfer 

Function  
Dates Applied Conversion Applied Profiles  

Ascension Yes 1998 - 2001 ENSCI/1% -> SPC/1% 10% 
Costa Rica No --- --- --- 
Hanoi Yes 2004 - 2009/05 ENSCI/2% unbuffered -> ENSCI0.5% 48% 
Irene No --- --- --- 
Kuala Lumpur No --- --- --- 
La Réunion Yes 1998 – 2000/07,  SPC/0.5% -> ENSCI/0.5% 7% 

8 records in 1998, 
2007/08 - 2016 

ENSCI/0.5% full buffer -> ENSCI/0.5% 56% 

Natal Yes 1999/03 – 2002/07 ENSCI/1% -> SPC/1% 17% 
Nairobi Yes 1998 – 2010/06 ENSCI/1% -> ENSCI/0.5% 64% 
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Table 3. ECC sensor and background current uncertainty (ΔIB) applied for each SHADOZ site.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

Site ECC ΔIB *μA+ (fraction of 
missing or > 0.05 μA) 

Ascension Is., U.K. SPC 0.02 (7.2%) 
ENSCI (92 records) 0.03 (7.4%) 

Costa Rica ENSCI 0.03 (0%) 

Hanoi, Vietnam ENSCI 0.03 (16.0%) 
SPC (15 records) 0.02 (1.6%) 

Irene, S. Africa SPC 0.02 (44.7%) 

Kuala Lumpur, Malaysia SPC (1998 – 11/2014) 0.02 (86.2%) 
ENSCI (12/2014 - 2016) 0.03 (14.0%) 

La Réunion, France ENSCI 0.03 (7.4%) 
SPC (40 records) 0.02 (0%) 

Nairobi, Kenya ENSCI 0.03 (74.2%) 

Natal, Brazil SPC 0.02 (0.5%) 
ENSCI (104 records) 0.03 (0.2%) 
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Table 4. Values of ΔCPH and ΔΦcorrected/Φcorrected for each SHADOZ site. 
Site ΔCPH ΔΦcorrected/Φcorrected  

Ascension Is., U.K. ± 0.014 ± 0.02  
Costa Rica ± 0.013 ± 0.02 and ± 0.04

*
  

Hanoi, Vietnam ± 0.010 ± 0.02 and ± 0.04
*
  

Irene, S. Africa ± 0.015 ± 0.04 
**

T=25±5°C, RH=50±25%, 
P=850hPa 

Kuala Lumpur, Malaysia ± 0.013 ± 0.04 
**

T=25±5°C, RH=50±25%, 
P=1000hPa 

La Réunion, France ± 0.014 ± 0.02  
Nairobi, Kenya ± 0.010 ± 0.02 and ± 0.04

*
  

Natal, Brazil ± 0.014 ± 0.02  
*
Used for profiles where Lab P-T-U is unknown. 

**
Based on Witte17 tropical climatology. 
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Table 5. Ozonesonde pump flow efficiencies, ΨP, with 1-σ uncertainties (± ΔΨP). ΨP are 
taken from the WMO/GAW Report. O3S-DQA panel revised ±ΔΨP values are computed to 
replace Komhyr, [1986] and Komhyr at al., *1995+ ±ΔΨP. 
Pressure 
[hPa] 

Komhyr, [1986]  
ΨP ± ΔΨP 

Komhyr et al., [1995]  
ΨP ± ΔΨP  

Johnson et al., [2002]
 1

 
ΨP ± ΔΨP 

 O3S-DQA Panel 
± ΔΨP 

Sfc-100 1.000 1.000 1.1.000  
100 0.993 ± 0.005 0.993 ± 0.005 0.967 ± 0.011 ± 0.010 
50 0.982 ± 0.006 0.982 ± 0.005 0.950 ± 0.012 ± 0.012 
30 0.978 ± 0.008 0.972 ± 0.008 0.935 ± 0.012 ± 0.014 
20 0.969 ± 0.009 0.961 ± 0.012 0.919 ± 0.014 ± 0.017 
10 0.948 ± 0.010 0.938 ± 0.023 0.876 ± 0.020 ± 0.022 
7 0.935 ± 0.012 0.920 ± 0.024 0.842 ± 0.025 ± 0.028 
5 0.916 ± 0.014 0.890 ± 0.025 0.803 ± 0.032 ± 0.037 
1
Average of ENSCI-Z model pump efficiency calibrations. 
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Table 6. Mean Sonde TCO (TCOsonde) and TOMS/OMI satellite overpasses for each site 
computed from data in Figure 7. Units are DU. ΔTCOsonde is the mean uncertainty. The ±σ 
standard deviations are computed for the TOMS and OMI periods separately, and the 
combined TOMS/OMI period. Note that matched satellite overpasses are filtered for clouds 
> 60% and distance from the site location > 200 km. OMI overpasses start in 2004/10.  
Satellite period SN TCO  n e

             TCO  n e
              ate  ite                      

Costa Rica (data since 2005) 
OMI 277 255.3±12.6 255.4±14.3 

Hanoi (data since 2004/09) 
OMI  147 261.7±14.7 264.5±17.6 

Ascension 
TOMS/OMI 445 260.4±13.1 271.6±12.3 
TOMS  220 259.1±13.4 277.7±10.9 
OMI  225 261.6±12.8 265.7±10.6 

Irene 
TOMS/OMI 250 272.4±15.0 269.6±16.4 
TOMS  122 274.2±15.4 274.7±16.2 
OMI  128 270.7±14.7 265.8±15.2 

Kuala Lumpur 
TOMS/OMI 215 247.3±14.9 260.6±14.1 
TOMS  86 249.7±14.9 267.4±14.5 
OMI  129 245.8±14.9 256.1±11.9 

La Réunion 
TOMS/OMI 454 264.9±15.8 268.5±15.7 
TOMS  129 255.8±13.1 272.4±16.0 
OMI  325 268.6±16.8 266.9±15.2 

Nairobi 
TOMS/OMI 570 255.8±15.9 262.1±13.3 
TOMS  199 257.7±17.3 270.2±12.9 
OMI  371 254.7±15.1 257.7±11.3 

Natal 
TOMS/OMI 436 261.1±13.4 269.2±12.7 
TOMS  188 258.9±14.4 275.3±11.2 
OMI  248 262.8±12.7 264.5±11.9 
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Figure 1. Locations of the eight reprocessed SHADOZ sites for which uncertainty estimates 
are calculated. Table 1 lists the lat/lon per site. 
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Figure 2. Time series of TCO at (a) Réunion and (b) Nairobi. Years are shown on the x-axis. 
Reprocessed data are in black and reprocessed data + transfer function are in blue. Transfer 
functions have been applied in (a) since 2007 and in (b) before 2010/06, marked with a 
vertical red line.  Black dashed lines indicate the mean TCO for reprocessed data only (values 
included in black). The blue dashed lines shows the mean TCO for the period where transfer 
functions have been applied (values included in blue).  
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Figure 3. Histogram of the percentage difference in TCO between reprocessed sondes and 
OMI overpasses with respect to sondes for (a) 2007-2016 Réunion and (b) 1998-2010/06 
Nairobi data. These are time periods for which transfer functions have been applied (blue 
hashed). 
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Figure 4. Left panels show the average profile of O3 partial pressure (PO3) in mPa (black) and 
± uncertainty estimates (cyan) for the eight SHADOZ sites. Right panels are the individual 
uncertainty contributions to the total O3 uncertainty (ΔPO3) (black) in percent. Solid black 
lines in the right hand side panels for (a)-(d) are ΔPO3 average profiles for which no transfer 
function was applied. Concurrently, dashed black lines are the average ΔPO3 of profiles 
where a transfer function is applied.  ΔIB/ΔM term is an abbreviation of the (ΔIM)2+(ΔIB)2/(IM- 
IB)2 term in Eqn 2. Refer to Table 1 for each sites’ time period and total number of profiles 
used to calculate the averages. 
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Figure 5. Similar to the right panels in Figure 4 but by season: DJF = December-January-
February, MAM = March-April-May, JJA = June-July-August, and SON = September-October-
November. Average seasonal PO3 is shown in silver in mPa units. Dashed black lines in (a)-(e) 
are the average ΔPO3 profiles for which a transfer function was applied. The solid black line 
denotes the average ΔPO3 for profiles that did not apply a transfer function. 
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Fig5 c n’t  
 
b. Natal, Brazil 

 
 
c. Nairobi, Kenya 
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d. La Réunion, France 
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e. Hanoi, Vietnam 
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f. Kuala Lumpur, Malaysia 
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g. Costa Rica (various sites) 
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h. Irene, South Africa 
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Figure 6. Individual profiles of sonde (red) and MLS (black) for (a) Nairobi, (b) Réunion, (c) 
Kuala Lumpur, and (d) Costa Rica. Sonde profiles are matched to the MLS resolution. Red 
shading denotes the sonde ±ΔPO3. Blue bars show the MLS precision. 
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Figure 7. Time series of TCO of every sonde launch (red) matched to a satellite overpass 
(TOMS and OMI, black). Red shading denotes the sonde TCO ± uncertainties (ΔTCO). 
Satellite datasets are filtered for clouds > 60% and distance from the sites location > 200km, 
then compared to the date of each sonde launch at the given site. The transition from TOMS 
to OMI overpasses occur in 2004/10 and are marked by the black triangle on the x-axis. 
Results are plotted in sequence, accounting for the uneven spacing of the years on the x-
axis. 
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